

DEVELOPMENT

The University of Manchester

CANCER

Embryonic gene module re-expression in melanoma yields insights into a Hdac2-driven mechanism of plastic adaptation

Kerrie Marie, PhD

Metastatic Colonisation – a highly selective process

1 week post colonisation

- 1. Colonisation point of extreme vulnerability
- Selects highly adaptable cells 2.
- Good target for the adjuvant setting 3.

Fully involved lung – therapy resistant and heterogeneous

Adaptation at the cellular level

Hypothesis: A cell's capacity for cell-state switching determines its capacity for metastasis and therapy resistance

Can we learn more from single embryonic melanocytes?

E15 iDct-GFP mouse

GFP⁺ cells at stem cell niche & hair follicles

Dct-rtTA; tre-H2B-GFP Zaidi et al., 2011

A Melanoblast reporter mouse

Zaidi et al., 2011

Multiple subpopulations identified

Embryonic melanocyte precursors SCP.E SCP.2 NPC.1 NPC.2 Mel.E 0-SCP.1 UMAP_2 Mel Neural -10-Mes.2 Mes.1 Mes.3 -10 10 -5 Ó 5 UMAP_1

Developmental Gene Module expression in melanomas

Vishaka Gopalan

Van Allen, et al., 2015 Gide, et al., 2021 Liu, et al., 2019

SCPs are multipotent progenitors at peripheral nerves

CD31-AF647 NGFR-Co555 GFP-Co488 DAPI

Four main cell identities

Hybrid states in cancer

Gene expression correlation

Hybrid states in metastases

Adaptation at the cellular level

Adaptation at the cellular level

Hybrid states in treatment resistance

Predicting mechanisms of gene regulation

HDACi sensitises cells to $TNF\alpha$

HDACi sensitises cells to $TNF\alpha$

HDACi sensitises cells to anti-PD-1 therapy

Hdac2 KD sensitises cells to TNF α and to therapy

Hdac2 KD sensitises cells to TNF α and to therapy

Hdac2 KD sensitises cells to TNF α and to therapy

Summary

Targeting embryonic-specific pathways in adults may have less side effects

Summary

- Melanoma cell states are conserved from development
- DGMs can predict patient outcome with embryonic gene signatures
- Hybrid state cells are associated with metastatic adaptation and nonresponse to therapy
- Hdac2 is critical for survival of melanoma cells following TNF α and anti-PD-1
- Hybrid state cells could be a type of *intermediate* melanoma cells

Manchester

<u>Marie Lab</u> Chun Wai Wong

Yuhong Jiang Charlotte Taylor Barca Johan Rott Luke Owen Rotem Leshem

Vishaka Gopalan

Sridhar Hannenhalli Adam Hurlstone

UoM Gene Editing Unit UoM Bioimaging Core NCI FACS Core NCI Single Cell Analysis Facility

Glenn Merlino Chi-Ping Day Cari Smith Jessica Ebersole Sung Chin Antonella Sassano Emily Wu

The University of Manchester Registered Charity No. 313865